Profile-Likelihood Approach for Estimating Generalized Linear Mixed Models With Factor Structures

نویسنده

  • Minjeong Jeon
چکیده

In this article, the authors suggest a profile-likelihood approach for estimating complex models by maximum likelihood (ML) using standard software and minimal programming. The method works whenever setting some of the parameters of the model to known constants turns the model into a standard model. An important class of models that can be estimated this way is generalized linear mixed models with factor structures. Such models are useful in educational research, for example, for estimation of value-added teacher or school effects with persistence parameters and for analysis of large-scale assessment data using multilevel item response models with discrimination parameters. The authors describe the profile-likelihood approach, implement it in the R software, and apply the method to longitudinal data and binary item response data. Simulation studies and comparison with gllamm show that the profile-likelihood method performs well in both types of applications. The authors also briefly discuss other types of models that can be estimated using the profile-likelihood idea.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating the Time of a Step Change in Gamma Regression Profiles Using MLE Approach

Sometimes the quality of a process or product is described by a functional relationship between a response variable and one or more explanatory variables referred to as profile. In most researches in this area the response variable is assumed to be normally distributed; however, occasionally in certain applications, the normality assumption is violated. In these cases the Generalized Linear Mod...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Monte Carlo Local Likelihood for Estimating Generalized Linear Mixed Models

We propose the Monte Carlo local likelihood (MCLL) method for estimating generalized linear mixed models (GLMMs) with crossed random e ects. MCLL initially treats model parameters as random variables, sampling them from the posterior distribution in a Bayesian model. The likelihood function is then approximated up to a constant by tting a density to the posterior samples and dividing it by the ...

متن کامل

A comparison of algorithms for maximum likelihood estimation of Spatial GLM models

In spatial generalized linear mixed models, spatial correlation is assumed by adding normal latent variables to the model. In these models because of the non-Gaussian spatial response and the presence of latent variables the likelihood function cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. The main purpose of this paper is to introduce two n...

متن کامل

Estimation of capture probabilities using generalized estimating equations and mixed effects approaches

Modeling individual heterogeneity in capture probabilities has been one of the most challenging tasks in capture-recapture studies. Heterogeneity in capture probabilities can be modeled as a function of individual covariates, but correlation structure among capture occasions should be taking into account. A proposed generalized estimating equations (GEE) and generalized linear mixed modeling (G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012